PE anti-mouse FOXP3 Antibody

Pricing & Availability
Clone
MF-14 (See other available formats)
Regulatory Status
RUO
Other Names
Forkhead box protein P3, Scurfin, JM2, IPEX, Zinc finger protein JM2
Isotype
Rat IgG2b, κ
Ave. Rating
Submit a Review
Product Citations
publications
MF-14_PE_FOXP3_Antibody_ICFC_1_042015
C57BL/6 splenocytes were surface stained with CD4 APC and then treated with True-Nuclear™ Transcription Factor Buffer Set. Cells were then stained with FOXP3 (clone MF-14) PE (top) or rat IgG2b, κ PE isotype control (bottom).
  • MF-14_PE_FOXP3_Antibody_ICFC_1_042015
    C57BL/6 splenocytes were surface stained with CD4 APC and then treated with True-Nuclear™ Transcription Factor Buffer Set. Cells were then stained with FOXP3 (clone MF-14) PE (top) or rat IgG2b, κ PE isotype control (bottom).
  • MF-14_PE_FOXP3_Antibody_ICFC_2_042015
Compare all formats See PE spectral data
Cat # Size Price Quantity Check Availability Save
126403 25 µg 162€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
126404 100 µg 317€
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

FOXP3 is a 47 kD transcription factor, also known as Forkhead box protein P3, Scurfin, JM2, or IPEX. It is proposed to be a master regulatory gene and more specific marker of T regulatory cells than most cell surface markers (such as CD4 and CD25). Transduced expression of FOXP3 in CD4+/CD25- cells has been shown to induce GITR, CD103, and CTLA4 and impart a T regulatory cell phenotype. FOXP3 is mutated in X-linked autoimmunity-allergic dysregulation syndrome (XLAAD or IPEX) in humans and in "scurfy" mice. Overexpression of FOXP3 has been shown to lead to a hypoactive immune state suggesting that this transcriptional factor is a central regulator of T cell activity.

Product Details
Technical data sheet

Product Details

Verified Reactivity
Mouse
Antibody Type
Monoclonal
Host Species
Rat
Formulation
Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide.
Preparation
The antibody was purified by affinity chromatography, and conjugated with PE under optimal conditions.
Concentration
0.2 mg/ml
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C, and protected from prolonged exposure to light. Do not freeze.
Application

ICFC - Quality tested

Recommended Usage

Each lot of this antibody is quality control tested by intracellular flow cytometry using our True-Nuclear™ Transcription Factor Staining Protocol. For flow cytometric staining, the suggested use of this reagent is ≤1.0 µg per million cells in 100 µl volume. It is recommended that the reagent be titrated for optimal performance for each application.

Excitation Laser
Blue Laser (488 nm)
Green Laser (532 nm)/Yellow-Green Laser (561 nm)
Application Notes

NOTE: For flow cytometric staining with this clone, True-Nuclear™ Transcription Factor Buffer Set (Cat. No. 424401) offers improved staining and is highly recommended.

Application References

(PubMed link indicates BioLegend citation)
  1. Ono M, et al. 2007. Nature 446:685.
  2. Hori S, et al. 2003. Science 299:1057.
  3. Fontenot JD, et al. 2003 Nature Immunol 4:330.
  4. Fallarino F, et al. 2009. J. Immunol. 183:6033. PubMed
  5. Barber A, et al. 2009 J. Immunol. 183:6939. PubMed
  6. Nakashima H, et al. 2010. J. Immunol. 184:4637. PubMed
Product Citations
  1. Ghouse SM, et al. 2020. Front Oncol. 10:384. PubMed
  2. Tian WJ, et al. 2021. Clin Exp Pharmacol Physiol. 48:902. PubMed
  3. Brog RA, et al. 2022. Cancer Immunol Res. 10:962. PubMed
  4. Zhao Z, et al. 2022. Adv Sci (Weinh). 9:e2201293. PubMed
  5. Shen Z, et al. 2022. EBioMedicine. 85:104285. PubMed
  6. Gong F, et al. 2023. Adv Healthc Mater. 12:e2201771. PubMed
  7. Wei M, et al. 2022. Front Immunol. 13:1017574. PubMed
  8. Zhu J, et al. 2022. Nat Commun. 13:7466. PubMed
  9. He Y, et al. 2022. Front Immunol. 13:986202. PubMed
  10. Jin SM, et al. 2023. Nat Nanotechnol. :. PubMed
  11. Zhu X, et al. 2023. Front Immunol. 14:1114802. PubMed
  12. Hajjar S, et al. 2022. Cell Death Differ. 29:585. PubMed
  13. Shen JZ, et al. 2022. Mol Cell. 82:1123. PubMed
  14. Wang M, et al. 2022. Adv Sci (Weinh). 9:e2202914. PubMed
  15. Lin J, et al. 2022. Adv Sci (Weinh). 9:e2202633. PubMed
  16. Sohn HS, et al. 2022. Sci Adv. 8:eabo5284. PubMed
  17. Han X, et al. 2022. Nutrients. 14:. PubMed
  18. Gao L, et al. 2023. J Nanobiotechnology. 21:56. PubMed
  19. Lo WL, et al. 2023. Nat Immunol. 24:676. PubMed
  20. Barberio AE, et al. 2023. Bioeng Transl Med. 8:e10453. PubMed
  21. Tang C, et al. 2023. Nat Commun. 14:1493. PubMed
  22. Wang K, et al. 2023. Nat Commun. 14:2950. PubMed
  23. Li M, et al. 2023. BMC Cancer. 23:497. PubMed
  24. Laura C Burzynski et al. 2019. Immunity. 50(4):1033-1042 . PubMed
  25. Li X, et al. 2022. Nat Commun. 13:2794. PubMed
  26. Xia S, et al. 2014. J Leukoc Biol. 95:733. PubMed
  27. Uzhachenko RV, et al. 2021. Cell Reports. 35(1):108944. PubMed
  28. Xiao R, et al. 2019. Brain Behav Immun. 75:137. PubMed
  29. Lee H, et al. 2020. Cell Metabolism. 31(4):822-836. PubMed
  30. Liu X, et al. 2020. Nature. . PubMed
  31. Barberio AE, et al. 2020. ACS Nano. 14:11238. PubMed
  32. Mirshahi F, et al. 2022. Cell Rep. 38:110454. PubMed
  33. Zhao J, et al. 2022. J Nanobiotechnology. 20:62. PubMed
  34. Trott DW, et al. 2021. Geroscience. 43:1331. PubMed
  35. Sharma NS, et al. 2020. J Clin Invest. 130:451. PubMed
  36. Guan H, et al. 2012. PLoS One. 7:e35650. PubMed
  37. Cai B, et al. 2021. Mol Cancer. 20:165. PubMed
  38. Dolgova EV, et al. 2022. Int J Mol Sci. 23:. PubMed
  39. Jiang S, et al. 2020. Scand J Immunol. e12867:91. PubMed
  40. Yi M, et al. 2021. J Hematol Oncol. 14:27. PubMed
  41. Nakashima H, et al. 2010. J Immunol. 184:4637. PubMed
  42. Cheng K, et al. 2021. Nat Commun. 12:2041. PubMed
  43. Palathingal Bava E, et al. 2022. JCI Insight. 7:. PubMed
  44. An J, et al. 2022. iScience. 25:103570. PubMed
  45. Wang Y, et al. 2021. Sci Rep. 1.429861111. PubMed
  46. Bertino P, et al. 2019. Oncoimmunology. 8:1601482. PubMed
  47. He Y, et al. 2021. Cell Metabolism. 33(5):988-1000.e7. PubMed
  48. Wang J, et al. 2021. Nat Commun. 12:6198. PubMed
  49. Chin AL, et al. 2021. Nat Commun. 12:5138. PubMed
  50. Hsiung Y, et al. 2014. PLoS One. 9:84410. PubMed
  51. Zhao X, et al. 2022. Nat Protoc. 17:2240. PubMed
  52. Zeng Q, et al. 2022. Front Immunol. 13:740805. PubMed
  53. Alhosaini K, et al. 2021. Brain Sci. :11. PubMed
  54. Shen JZ, et al. 2020. Cell. 184(2):352-369.e23. PubMed
  55. M H, et al. 2016. Sci Rep. 6: 20588. PubMed
  56. Liu X, et al. 2021. Int J Nanomedicine. 16:5675. PubMed
  57. Daneshmandi S, et al. 2021. Elife. 10:. PubMed
  58. Lu J, et al. 2021. Cell Death Discov. 7:165. PubMed
  59. Shafiei-Jahani P, et al. 2021. Nat Commun. 12:2526. PubMed
  60. Xu Q, et al. 2021. Theranostics. 11:1937. PubMed
  61. Li J, et al. 2022. Nat Commun. 13:4032. PubMed
  62. Lou Y, et al. 2021. Int J Mol Sci. 22:. PubMed
  63. Subramanian K, et al. 2019. Nat Microbiol. 4:62. PubMed
  64. Wang Y, et al. 2021. Nat Commun. 12:4964. PubMed
  65. Zhou J, et al. 2022. Int J Oncol. 61: . PubMed
  66. Chen Z, et al. 2016. PLoS One. 11: 0146681. PubMed
  67. Lai Y, et al. 2022. Clin Transl Med. 12:e999. PubMed
  68. Zhang J, et al. 2022. Biomater Res. 26:44. PubMed
  69. Zhou H, et al. 2021. Cell Death Discov. 7:332. PubMed
  70. Yang Z, et al. 2021. Nat Commun. 12:4299. PubMed
  71. Silva DA, et al. 2019. Nature. 565:186. PubMed
  72. Parodi B, et al. 2021. Front Immunol. 12:655212. PubMed
  73. Fedele C, et al. 2021. J Exp Med. 218: . PubMed
  74. Tao Z, et al. 2022. Cells. 11:. PubMed
  75. Smith LK, et al. 2021. Elife. 10:. PubMed
  76. Guan D, et al. 2021. Cell Death Dis. 12:431. PubMed
  77. Barber A, et al. 2009. J Immunol. 183:6939. PubMed
  78. Zeng J, et al. 2020. Int J Biol Sci. 1.939583333. PubMed
  79. Blaszczak AM, et al. 2019. J Immunol. 202:2451. PubMed
  80. Gardner A, et al. 2022. J Immunother Cancer. 10:. PubMed
  81. Liu A, et al. 2022. Front Cell Infect Microbiol. 12:960208. PubMed
  82. Dai B, et al. 2021. Cell Reports Medicine. 2(8):100381. PubMed
  83. Ye Y, et al. 2020. Genome Med. 0.557638889. PubMed
  84. Li CY, et al. 2022. Int J Mol Sci. 23:. PubMed
  85. Wang H, et al. 2022. J Cancer. 13:2126. PubMed
  86. Yuan M, et al. 2017. Hum Reprod. 32:94. PubMed
RRID
AB_1089117 (BioLegend Cat. No. 126403)
AB_1089117 (BioLegend Cat. No. 126404)

Antigen Details

Structure
50-55 kd protein. Forkhead/winged-helix transcription factor family, contains zinc finger and forkhead domains.
Distribution

Nuclear; expressed in Treg cells.

Function
Master regulatory gene in Treg cell development, crucial for immune homeostasis.
Interaction
Interacts with DNA
Cell Type
Tregs
Biology Area
Immunology
Molecular Family
Nuclear Markers
Antigen References

1. Ono M, et al. 2007. Nature 446:685.
2. Hori S, et al. 2003. Science 299:1057.
3. Fontenot JD, et al. 2003 Nature Immunol 4:330.

Regulation
Present at high level in T reg cells. Induced by T cell activation.
Gene ID
20371 View all products for this Gene ID
Specificity (DOES NOT SHOW ON TDS):
FOXP3
Specificity Alt (DOES NOT SHOW ON TDS):
FOXP3
App Abbreviation (DOES NOT SHOW ON TDS):
ICFC
UniProt
View information about FOXP3 on UniProt.org

Related FAQs

What type of PE do you use in your conjugates?
We use R-PE in our conjugates.
Can I stain whole blood with anti-FOXP3 using your Foxp3 staining kit?

It is not recommended. It is best to use PBMCs for this testing.

Can FOXP3 be costained with cytokines?

The larger holes created by the nuclear permeabilization required for FOXP3 may allow cytokines to leak out of the cell, making it harder to detect lowly-expressed cytokines. You may have to use a control where the cells are only permeabilized through the cell membrane.

Go To Top Version: 3    Revision Date: 04.21.2015

For Research Use Only. Not for diagnostic or therapeutic use.

 

This product is supplied subject to the terms and conditions, including the limited license, located at www.biolegend.com/terms) ("Terms") and may be used only as provided in the Terms. Without limiting the foregoing, BioLegend products may not be used for any Commercial Purpose as defined in the Terms, resold in any form, used in manufacturing, or reverse engineered, sequenced, or otherwise studied or used to learn its design or composition without express written approval of BioLegend. Regardless of the information given in this document, user is solely responsible for determining any license requirements necessary for user’s intended use and assumes all risk and liability arising from use of the product. BioLegend is not responsible for patent infringement or any other risks or liabilities whatsoever resulting from the use of its products.

 

BioLegend, the BioLegend logo, and all other trademarks are property of BioLegend, Inc. or their respective owners, and all rights are reserved.

 

8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

ProductsHere

Login / Register
Remember me
Forgot your password? Reset password?
Create an Account