Biotin anti-mouse IFN-γ Antibody

Pricing & Availability
Clone
XMG1.2 (See other available formats)
Regulatory Status
RUO
Other Names
Interferon-γ, Immune interferon, Type II interferon, T cell interferon, Macrophage-activating factor (MAF)
Isotype
Rat IgG1, κ
Cat # Size Price Quantity Check Availability
505803 50 µg $101.00
Check Availability


Need larger quantities of this item?
Request Bulk Quote
505804 500 µg $252.00
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

IFN-γ is a potent multifunctional cytokine which is secreted primarily by activated NK cells and T cells. Originally characterized based on anti-viral activities, IFN-γ also exerts anti-proliferative, immunoregulatory, and proinflammatory activities. IFN-γ can upregulate MHC class I and II antigen expression by antigen-presenting cells.

Technical data sheet

Product Details

Verified Reactivity
Mouse
Antibody Type
Monoclonal
Host Species
Rat
Immunogen
E. coli-expressed, recombinant mouse IFN-γ
Formulation
Phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide.
Preparation
The antibody was purified by affinity chromatography, and conjugated with biotin under optimal conditions.
Concentration
0.5 mg/ml
Storage & Handling
The antibody solution should be stored undiluted between 2°C and 8°C. Do not freeze.
Application

ELISA Detection, ELISPOT Detection, ICFC

Recommended Usage

Each lot of this antibody is quality control tested by ELISA assay. For use as an ELISA detection antibody, a concentration range of 0.5-2.0 µg/ml is recommended. To obtain a linear standard curve, serial dilutions of IFN-γ recombinant protein ranging from 2000 to 15 pg/ml are recommended for each ELISA plate.
For use as an ELISPOT detection antibody, a concentration range of 1-4 µg/ml is recommended. It is recommended that the reagent be titrated for optimal performance for each application.

Application Notes

ELISA1-4,11,14 or ELISPOT5 Detection: The biotinylated XMG1.2 antibody is useful as a detection antibody for a sandwich ELISA or ELISPOT assay, when used in conjunction with purified R4-6A2 antibody (Cat. No. 505702/505706) as the capture antibody and recombinant mouse IFN-γ (Cat. No. 575309) as the standard.
ELISA or ELISPOT Capture: The purified XMG1.2 antibody is useful as a capture antibody for a sandwich ELISA or ELISPOT assay, when used in conjunction with biotinylated R4-6A2 antibody (Cat. No. 505704) as the detection antibody and recombinant mouse IFN-γ (Cat. No. 575309) as the standard. The LEAF™ purified antibody is suggested for ELISPOT capture (Cat. No. 505812).
Flow Cytometry7,8,12,13,16: The fluorochrome-labeled XMG1.2 antibody is useful for intracellular immunofluorescent staining and flow cytometric analysis to identify IFN-γ-producing cells within mixed cell populations.
Neutralization1-3,9,10: The XMG1.2 antibody can neutralize the bioactivity of natural or recombinant IFN-γ. The LEAF™ purified antibody (Endotoxin <0.1 EU/µg, Azide-Free, 0.2 µm filtered) is recommended for neutralization of mouse IFN-γ bioactivity in vivo and in vitro (Cat. No. 505812). For in vivo studies or highly sensitive assays, we recommend Ultra-LEAF™ purified antibody (Cat. No. 505834) with a lower endotoxin limit than standard LEAF™ purified antibodies (Endotoxin <0.01 EU/µg).
Additional reported applications (for the relevant formats) include: Western blotting, immunohistochemical staining of frozen tissue sections6,22,23, and immunocytochemistry.
Note: For testing mouse IFN-γ in serum, plasma or supernatant, BioLegend's ELISA Max™ Sets (Cat. No. 430801 to 430806) are specially developed and recommended.

Application References

(PubMed link indicates BioLegend citation)
  1. Abrams J, et al. 1992. Immunol. Rev. 127:5. (ELISA, Neut)
  2. Sander B, et al. 1993. J. Immunol. Meth. 166:201. (ELISA, Neut)
  3. Abrams J, et al. 1995. Curr. Prot. Immunol. John Wiley and Sons, New York. Unit 6.20. (ELISA, Neut)
  4. Yang X, et al. 1993. J. Immunoassay 14:129. (ELISA)
  5. Klinman D, et al. 1994. Curr. Prot. Immunol. John Wiley and Sons, New York. Unit 6.19. (ELISPOT)
  6. Sander B, et al. 1991. Immunol. Rev. 119:65. (IHC)
  7. Ferrick D, et al. 1995. Nature 373:255. (FC)
  8. Ko SY, et al. 2005. J. Immunol. 175:3309. (FC) PubMed
  9. Peterson KE, et al. 2000. J. Virol. 74:5363. (Neut)
  10. DeKrey GK, et al. 1998. Infect. Immun. 66:827. (Neut)
  11. Dzhagalov I, et al. 2007. J. Immunol. 178:2113. (ELISA)
  12. Lawson BR, et al. 2007. J. Immunol. 178:5366. (FC)
  13. Lee JW, et al. 2006. Nature Immunol. 8:181. (FC) PubMed
  14. Xu G, et al. 2007. J. Immunol. 179:5358. (ELISA) PubMed
  15. Montfort M, et al.2004. J. Immunol. 173:4084. PubMed
  16. Haring JS, et al. 2008. J. Immunol. 180:2855. (FC) PubMed
  17. Jordan JM, et al. 2008. Infect Immun. 76:3717. PubMed
  18. Tonkin DR, et al. 2008. J. Immunol. 181:4516. PubMed
  19. Charles N, et al. 2010. Nat. Med. 16:701. (FC) PubMed
  20. Cui Y, et al. 2009. Invest. Ophth. Vis. Sci. 50:5811. (FC) PubMed
  21. Mykkanen OT, et al. 2014. PLoS One. 9:114790. PubMed
  22. Yokogawa M, et al. 2013. Mol. Carcinog. 52:760. (IHC)
  23. Mottram PL, et al. 1998. J Immunol. 161:602. (IHC)
Product Citations
  1. Lew MH, et al. 2018. Pathog Glob Health. :1. PubMed
  2. Cautivo KM, et al. 2022. Immunity. 55:254. PubMed
  3. Altemus J, et al. 2022. J Cell Physiol. 237:3001. PubMed
  4. Campisi L, et al. 2022. Nature. 606:945. PubMed
  5. Sato A, et al. 2022. Biol Pharm Bull. 45:1798. PubMed
  6. Mulder R, et al. 2017. Front Immunol. 1.464583333. PubMed
  7. Dong L, et al. 2021. Cancer Cell. . PubMed
  8. Volpedo G, et al. 2022. NPJ Vaccines. 7:32. PubMed
  9. Peng X, et al. 2010. J Pharmacol Exp Ther. 13.86527778. PubMed
  10. Dong S, et al. 2020. J Control Release. 328:653. PubMed
  11. Peng Y 2017. PLoS One. 10.1371/journal.pone.0188112. PubMed
  12. Berdasco C, et al. 2020. Front Cell Infect Microbiol. 0.681944444. PubMed
  13. Montfort M, et al. 2004. J Immunol. 173:4084. PubMed
  14. Tanner S, et al. 2016. J Histochem Cytochem. 64(12):753-767. PubMed
  15. Thornton T, et al. 2016. Nat Commun. 7:10553. PubMed
  16. Plantinga T, et al. 2011. Clin Vaccine Immunol. 1.18125. PubMed
  17. Wang P, et al. 2018. Theranostics. 0.488194444. PubMed
  18. Cooley L, et al. 2016. Sci Rep. 6: 25840. PubMed
  19. Guo H, et al. 2014. J Virol. 88:12006. PubMed
RRID
AB_315398 (BioLegend Cat. No. 505803)
AB_315398 (BioLegend Cat. No. 505804)

Antigen Details

Structure
Cytokine; dimer; 40-80 kD (Mammalian)
Bioactivity
Antiviral/antiparasitic activities; inhibits proliferation; enhances MHC class I and II expression on APCs
Cell Sources
CD8+ and CD4+ T cells, NK cells
Cell Targets
T cells, B cells, macrophages, NK cells, endothelial cells, fibroblasts
Receptors
IFN-γRα (CDw119) dimerized with IFN-γRβ (AF-1)
Cell Type
Tregs
Biology Area
Cell Biology, Immunology, Neuroinflammation, Neuroscience
Molecular Family
Cytokines/Chemokines
Antigen References

1. Fitzgerald K, et al. Eds. 2001. The Cytokine FactsBook. Academic Press, San Diego.
2. De Maeyer E, et al. 1992. Curr. Opin. Immunol. 4:321.
3. Farrar M, et al. 1993. Annu. Rev. Immunol. 11:571.
4. Gray P, et al. 1987. Lymphokines 13:151.

Regulation
Upregulated by IL-2, FGF-basic, EGF; downregulated by 1-α-25-Dihydroxy vitamin D3, dexamethasone
Gene ID
15978 View all products for this Gene ID
UniProt
View information about IFN-gamma on UniProt.org
Go To Top Version: 1    Revision Date: 11/30/2012

8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

Login/Register
Forgot your password? Reset Password
Request an Account