Purified anti-H2A.X Phospho (Ser139) Antibody

Pricing & Availability
Clone
2F3 (See other available formats)
Regulatory Status
RUO
Other Names
H2A.x, H2a/x, Histone 2A, Histone 2A.X, Gamma-H2AX
Isotype
Mouse IgG1, κ
Ave. Rating
Submit a Review
Product Citations
publications
a-2F3_PURE_H2AdotX_Antibody_WB_122117
Total lysates (15 µg protein) from untreated HeLa (Lane 1) and UV treated HeLa (Lane 2) cells were resolved by electrophoresis (4-20% Tris-Glycine gel), transferred to nitrocellulose, and probed with 0.1 µg/mL Purified anti-H2A.X Phospho (Ser139) antibody, clone 2F3 (upper) or 1:2000 diluted anti-GAPDH antibody, clone 1D4 (lower). Proteins were visualized by chemiluminescence detection using a 1:3000 diluted goat anti-mouse-IgG secondary antibody conjugated to HRP for both anti-H2A.X Phospho (Ser139) antibody and anti-GAPDH antibody. Lane M: Molecular weight ladder
  • a-2F3_PURE_H2AdotX_Antibody_WB_122117
    Total lysates (15 µg protein) from untreated HeLa (Lane 1) and UV treated HeLa (Lane 2) cells were resolved by electrophoresis (4-20% Tris-Glycine gel), transferred to nitrocellulose, and probed with 0.1 µg/mL Purified anti-H2A.X Phospho (Ser139) antibody, clone 2F3 (upper) or 1:2000 diluted anti-GAPDH antibody, clone 1D4 (lower). Proteins were visualized by chemiluminescence detection using a 1:3000 diluted goat anti-mouse-IgG secondary antibody conjugated to HRP for both anti-H2A.X Phospho (Ser139) antibody and anti-GAPDH antibody. Lane M: Molecular weight ladder
  • b-2F3_PURE_H2AdotX_Antibody_ICC_051019
    HeLa cells were stained with purified anti-H2A.X Phospho (Ser 139) (clone 2F3) antibody, followed by staining with DyLightTM 594 conjugated goat anti-mouse IgG (red) antibody. Actin filaments were labeled in green. Nuclei were stained with DAPI (blue).
Compare all formats See high resolution IF data...
Cat # Size Price Quantity Check Availability Save
613401 25 µg 118 CHF
Check Availability


Need larger quantities of this item?
Request Bulk Quote
613402 100 µg 293 CHF
Check Availability


Need larger quantities of this item?
Request Bulk Quote
Description

H2A.X is a 14 kD basal histone and a member of the H2 histone family. This nuclear protein is synthesized in the G1 and S phase of the cell cycle and is known to be important for DNA repair and maintaining genomic stability and for recombination between immunoglobulin switch regions. H2A.X becomes phosphorylated on serine 139 after double-stranded DNA breaks. Phosphorylated H2A.X promotes DNA repair and maintains genomic stability. The 2F3 monoclonal antibody reacts with phosphorylated human H2A.X (Ser139) and has been shown to be useful for Western blotting, immunofluorescence and flow cytometry.

Product Details
Technical Data Sheet (pdf)

Product Details

Verified Reactivity
Human, Mouse
Antibody Type
Monoclonal
Host Species
Mouse
Immunogen
Modified peptide
Formulation
This H2A.X antibody is provided in phosphate-buffered solution, pH 7.2, containing 0.09% sodium azide. Final antibody concentration is 0.5 mg/ml.
Preparation
The antibody was purified by affinity chromatography.
Concentration
0.5 mg/ml
Storage & Handling
Upon receipt, store between 2°C and 8°C.
Application

WB - Quality tested
ICC - Verified
ICFC - Reported in the literature, not verified in house

Recommended Usage

Each lot of this antibody is quality control tested by Western blotting. Western blotting, suggested working dilution(s): Use 5 µg antibody per 5 ml antibody dilution buffer for each mini-gel. For immunocytochemistry, a concentration range of 1.0 - 4.0 μg/ml is recommended. It is recommended that the reagent be titrated for optimal performance for each application.

Application Notes

Additional reported applications (for the relevant formats of this clone) include: immunohistochemistry on paraffin embedded sections2, immunofluorescence microscopy3-9, Western blotting 10-12, and flow cytometry1,13. Clone 2F3 cross-reacts with mouse4.

Intracellular staining protocol for Anti-H2A.X-Phosphorylated (Ser139) Antibody for Flow Cytometry

1. Prepare 70% absolute ethanol. Chill solution by storing at -20°C.
2. Prepare cells of interest.
3. Wash 1X with PBS, centrifuge at 350g for 5 min.
4. Discard the supernatant and vortex to loosen cell pellet.
5. Add pre-cooled 70% ethanol drop by drop, while vortexing.
6. Incubate at -20°C for 60 minutes.
7. Wash 3X with BioLegend Cell Staining Buffer and resuspend the cells at 0.5-1 X 107 cells/ml in the cell staining buffer.
8. Perform immunofluorescent staining for flow cytometry.

Application References

(PubMed link indicates BioLegend citation)
  1. Jha JC, et al. 2013. J. Virol. 87:5255. (FC) PubMed
  2. Akbay A, et al. 2008. Am J Pathol. 173:536. (IHC) PubMed
  3. Mochizuki K, et al.2008.J cell Sci.121:2148. (IF) PubMed
  4. Xiao R, et al. 2007. Mol Cell Biol.27:5393. (IF) PubMed
  5. Rossi DJ, et al. 2007. Nature. 447:725. (IF) PubMed
  6. Loidl J, et al. 2009. Mol Cell Biol. 20:2048. (IF) PubMed
  7. Beels L, et al. 2009. Circulation. 120:1903. (IF) PubMed
  8. Suzuki K, et al. 2010. Nucleic Acids Res. 38:e129. (IF) PubMed
  9. Lukaszewicz A. 2010. Chromasoma Apr 27. [Epub ahead of print] (IF) PubMed
  10. Yamada C, et al. 2010 J. Biol. Chem. 285:16693. (WB) PubMed
  11. Bu Y, et al. 2010, Biochem Biophys Res Commun. 397:157. (WB) PubMed
  12. Massignan T, et al. 2010. J. Biol Chem. 285:7752. (WB) PubMed
  13. Banath JP, et al. 2010. BMC Cancer 10:4 (FC)
  14. Zhang M., et al. 2011. Cancer Res. 23:7155. PubMed
  15. Kuefner MA, et al. 2012. Radiology 264:59. PubMed
  16. Yoshihara Y, et al. 2012. Biochem Biophys Res Cmmun. 421:57. PubMed
  17. Titus S, et al. 2013. Sci Transl Med. 13:21. PubMed
  18. Crown KN, et al. 2013. G3. 6:1927. PubMed
  19. Schenkwein D, et al. 2013. Nucleic Acids Res. 41:e61. PubMed
  20. Zhadanova NS, et al. 2014. Mol Cell Biol. 34:2786. PubMed
  21. Horrell SA, et al. 2014. Eukaryot Cell. 13:1300. PubMed
  22. Maya-Mendoza A, et al. 2015. Mol Oncol. 9:601. PubMed
Product Citations
  1. Xu C, et al. 2022. Cell Mol Gastroenterol Hepatol. 15:327. PubMed
  2. Hsiao HW, et al. 2023. Biomolecules. 13: . PubMed
  3. Mendoza-Munoz PL, et al. 2023. NAR Cancer. 5:zcad003. PubMed
  4. Oelschläger L, et al. 2023. Cells. 12: . PubMed
  5. Kulbay M, et al. 2022. Mol Cell Biochem. 477:2213. PubMed
  6. Chomiak AA, et al. 2022. iScience. 25:104354. PubMed
  7. Li M, et al. 2011. Mol Cell Biol. 31:2090. PubMed
  8. Kuefner M, et al. 2012. Radiology. 264:59:00. PubMed
  9. Marchena-Cruz E, et al. 2023. Cell Rep. 42:112148. PubMed
  10. Roggan MD, et al. 2023. Front Public Health. 11:1063250. PubMed
  11. Saez-Ayala M, et al. 2023. Nat Commun. 14:3079. PubMed
  12. Wang C, et al. 2020. DNA Repair (Amst). 95:102946. PubMed
  13. Nomura D, et al. 2021. Biol Pharm Bull. 44:642. PubMed
  14. Xiao R, et al. 2007. Mol Cell Biol. 27:5393. PubMed
  15. Teloni F et al. 2019. Mol Cell. 73(4):670-683 . PubMed
  16. Feng W, et al. 2017. Proc Natl Acad Sci U S A. 114(2):406-411. PubMed
  17. Nyeste A, et al. 2016. J Biol Chem. 291: 4473 - 4486. PubMed
  18. Jha H, et al. 2013. J Virol. 87:5255. PubMed
  19. Wang R, et al. 2020. Proc Natl Acad Sci U S A. 117:33436. PubMed
  20. Suzuki T, et al. 2021. Nucleic Acids Res. 49:e40. PubMed
  21. Roeschert I, et al. 2021. Nat Cancer. 2:312. PubMed
  22. Zhong B, et al. 2019. Am J Cancer Res. 9:79. PubMed
  23. Kaul Z, et al. 2011. EMBO Rep. 13:52. PubMed
  24. Taglialatela A et al. 2017. Molecular cell. 68(2):414-430 . PubMed
  25. Yamauchi M, et al. 2017. Sci Rep. 7:41812. PubMed
  26. Maffucci P, et al. 2018. J Clin Invest. 128:5489. PubMed
  27. Murray-Nerger LA, et al. 2021. Nucleic Acids Res. 49:2044. PubMed
  28. Stoyas CA, et al. 2020. Neuron. 630:105. PubMed
  29. Kohutova A, et al. 2019. FASEB J. :fj201801877RR. PubMed
  30. Hopp AK, et al. 2021. Mol Cell. 81:340. PubMed
  31. Gatti M, et al. 2020. Cell Rep. 32:107985. PubMed
  32. Michelena J, et al. 2021. Life Sci Alliance. 4: . PubMed
  33. Pelicci S, et al. 2022. Nanomaterials (Basel). 12. PubMed
  34. Schneider MWG, et al. 2022. Nature. 609:183. PubMed
  35. Massonneau J, et al. 2018. FEBS Open Bio. 8:416. PubMed
  36. Kwasna D et al. 2018. Molecular cell. 70(1):150-164 . PubMed
  37. Mlcochova P, et al. 2020. Cell Rep. 30:3972. PubMed
  38. Yoshihara Y, et al. 2012. Biochem Biophys Res Commun. 421:57. PubMed
  39. Maya-Mendoza A, et al. 2015. Mol Oncol. 9:601. PubMed
  40. Pedersen R, et al. 2016. Nat Commun. 7:13887. PubMed
  41. Guo Y, et al. 2022. iScience. 25:104519. PubMed
  42. Lee S, et al. 2021. Nat Commun. 12:6309. PubMed
  43. Jelinkova S, et al. 2021. Int J Mol Sci. 22: . PubMed
  44. Friedman J, et al. 2018. J Immunother Cancer. 6:59. PubMed
  45. Nguyen TM, et al. 2020. Nucleic Acids Res. 48:2621. PubMed
  46. Michelena J, et al. 2018. Nat Commun. 9:2028. PubMed
  47. Gavande NS, et al. 2020. Nucleic Acids Res. 48:11536. PubMed
  48. Chalker S 2014. Eukaryot Cell. 13:1300. PubMed
  49. Gañán-Gómez I, et al. 2022. Nat Med. . PubMed
  50. Qin Y, et al. 2019. Mol Oncol. 13:1419. PubMed
  51. Wang Z, et al. 2019. J Biol Chem. 294:3909. PubMed
  52. Mochizuki K, et al. 2008. J Cell Sci. 121:2148. PubMed
  53. Mochizuki J 2009. Mol Biol Cell. 2.519444444. PubMed
  54. Martinelli P, et al. 2011. Blood. 117:6617. PubMed
  55. Lezaja A, et al. 2021. Nat Commun. 12:3827. PubMed
  56. Oshima K, et al. 2020. Nat Cancer. 1:1113. PubMed
  57. Callender LA, et al. 2021. Nat Commun. 12:3379. PubMed
  58. Michelena J, et al. 2019. J Cell Biol. 218:2865. PubMed
  59. Cuella-Martin R, et al. 2021. Cell. 184(4):1081-1097.e19. PubMed
  60. Delaney JR, et al. 2020. PLoS Genet. 16:e1008558. PubMed
  61. Titus S, et al. 2013. Sci Transl Med. 13:21. PubMed
  62. Ueno H, et al. 2022. Commun Biol. 5:571. PubMed
  63. Saxena S et al. 2018. Cell reports. 25(12):3273-3282 . PubMed
  64. Sang M, et al. 2018. Oncol Rep. 39:2749. PubMed
  65. Paculova H, et al. 2017. Tumour Biol. 39:1010428317727479. PubMed
  66. Hjorth–Jensen K, et al. 2018. Nucleic Acids Res. 46:9484. PubMed
  67. Furia L, et al. 2022. Front Oncol. 12:960734. PubMed
  68. Switonski PM, et al. 2021. Cell Rep. 37:110062. PubMed
  69. Kychygina A, et al. 2021. Sci Rep. 11:13195. PubMed
  70. Mlcochova P,et al. 2017. EMBO J.. 10.15252/embj.201796880. PubMed
  71. Kim C, et al. 2021. Nat Commun. 12:1097. PubMed
  72. Furia L, et al. 2022. Int J Mol Sci. 23:. PubMed
  73. Pellegrino S, et al. 2017. Cell Reports. 10.1016/j.celrep.2017.05.016. PubMed
  74. Kim IK, et al. 2020. Cell Death Differ. 27:2263. PubMed
  75. Sakata R, et al. 2021. Cell Reports. 35(4):108999. PubMed
  76. Stobezki R, et al. 2020. Reprod Sci. 27:940. PubMed
  77. Udugama M, et al. 2015. Nucleic Acids Res. 43: 10227 - 10237. PubMed
  78. Sandoval P, et al. 2015. PLoS Genet. 11: 1005405. PubMed
  79. Denoth-Lippuner A, et al. 2021. Cell Stem Cell. 28:2020. PubMed
  80. Perucca P et al. 2018. Biochimica et biophysica acta. 1865(6):898-907 . PubMed
  81. Garg J, et al. 2020. Current Biology. 29(14):2371-2379. PubMed
  82. Przetocka S, et al. 2018. Mol Cell. 72:568. PubMed
  83. Valianatos G,et al. 2017. PLoS One. 10.1371/journal.pone.0185801. PubMed
  84. Akematsu T et al. 2017. eLife. 6 pii: e26176. PubMed
  85. Massignan T, et al. 2010. J Biol Chem. 285:7752. PubMed
  86. Widodo N, et al. 2010. PLoS One. 5:e13536. PubMed
  87. Akbay E, et al. 2008. Am J Pathol. 173:536. PubMed
  88. Crown K, et al. 2013. g3. 3:1927. PubMed
  89. Zhdanova N, et al. 2014. Mol Cell Biol. 34:2786. PubMed
  90. Swift ML, et al. 2021. Cell Reports. 34(11):108840. PubMed
  91. Amrenova A, et al. 2021. PLoS One. 16:e0249059. PubMed
  92. Hirano J 2011. J Cell Biol. 192:263. PubMed
  93. Suzuki K, et al. 2010. Nucleic Acids Res. 38:e129. PubMed
  94. Xu Y, et al. 2020. Oncol Rep. 44:1455. PubMed
  95. Prendergast L, et al. 2020. Nat Commun. 3.606944444. PubMed
  96. Yamauchi S, et al. 2017. BMC Cancer. 10.1186/s12885-017-3621-x. PubMed
  97. Ogata T, et al. 2017. PLoS One. 10.1371/journal.pone.0179884. PubMed
RRID
AB_315795 (BioLegend Cat. No. 613401)
AB_315795 (BioLegend Cat. No. 613402)

Antigen Details

Structure
Basal histone, H2 histone family; 14 kD
Distribution

Nuclear

Function
Phosphorylated H2AX promotes DNA repair and maintains genomic stability. Important for recombination between immunoglobulin switch regions
Modification
Phosphorylation on Ser139 after double-stranded DNA breaks
Biology Area
Cell Biology, Chromatin Remodeling/Epigenetics, DNA Repair/Replication, Neuroscience
Molecular Family
Phospho-Proteins
Antigen References

1. Mannironi C, et al.1989. Nucleic Acids Res. 17:9113.
2. Celeste A, et al. 2002. Science 296:922.
3. Bassing CH, et al. 2002. Proc. Natl. Acad. Sci. USA 99:8173.
4. Reina-San-Martin B, et al. 2003. J. Exp. Med. 197:1767.

Regulation
Synthesized in G1 and S-phase of cell cycle
Gene ID
3014 View all products for this Gene ID
UniProt
View information about H2A.X Phospho Ser139 on UniProt.org

Related FAQs

There are no FAQs for this product.
Go To Top Version: 4    Revision Date: 11.04.2016

For Research Use Only. Not for diagnostic or therapeutic use.

 

This product is supplied subject to the terms and conditions, including the limited license, located at www.biolegend.com/terms) ("Terms") and may be used only as provided in the Terms. Without limiting the foregoing, BioLegend products may not be used for any Commercial Purpose as defined in the Terms, resold in any form, used in manufacturing, or reverse engineered, sequenced, or otherwise studied or used to learn its design or composition without express written approval of BioLegend. Regardless of the information given in this document, user is solely responsible for determining any license requirements necessary for user’s intended use and assumes all risk and liability arising from use of the product. BioLegend is not responsible for patent infringement or any other risks or liabilities whatsoever resulting from the use of its products.

 

BioLegend, the BioLegend logo, and all other trademarks are property of BioLegend, Inc. or their respective owners, and all rights are reserved.

 

8999 BioLegend Way, San Diego, CA 92121 www.biolegend.com
Toll-Free Phone: 1-877-Bio-Legend (246-5343) Phone: (858) 768-5800 Fax: (877) 455-9587

This data display is provided for general comparisons between formats.
Your actual data may vary due to variations in samples, target cells, instruments and their settings, staining conditions, and other factors.
If you need assistance with selecting the best format contact our expert technical support team.

ProductsHere

Login / Register
Remember me
Forgot your password? Reset password?
Create an Account